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ABSTRACT
Background: Interleukin (IL)-23�Th17 axis plays an important role in the pathophysiology of asthma and ec-
zema, however, there are some conflicting data about the effects of this system on allergic airway inflamma-
tion. In the present study, we aim to dissect the spatiotemporal differences in the roles of IL-23 in an
epicutaneously-sensitized asthma model of mice.
Methods: C57BL�6 mice were sensitized to ovalbumin (OVA) by patch application on the skin, followed by air-
way exposure to aerosolized OVA. During sensitization and�or challenge phase, either a specific neutralizing
antibody (Ab) against IL-23 or control IgG was injected intraperitoneally. On days 1 and 8 after the final OVA
exposure, airway inflammation and responsiveness to methacholine, immunoglobulin levels in serum, and cy-
tokine release from splenocytes were evaluated. Skin Il23a mRNA levels were evaluated with quantitative RT-
PCR.
Results: Patch application time-dependently increased the expression of Il23a mRNA expression in the skin.
Treatment with the anti-IL-23 Ab during sensitization phase alone significantly reduced the number of eosino-
phils in bronchoalveolar lavage fluids and peribronchial spaces after allergen challenge compared with treat-
ment with control IgG. Anti-IL-23 Ab also reduced serum levels of OVA-specific IgG1. In contrast, treatment with
the anti-IL-23 Ab during the challenge phase alone rather exacerbated airway hyperresponsiveness to metha-
choline with little effects on airway eosinophilia or serum IgG1 levels.
Conclusions: IL-23 expressed in the skin during the sensitization phase plays an essential role in the devel-
opment of allergic phenotypes, whereas IL-23 in the airways during the challenge phase suppresses airway hy-
perresponsiveness.
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ABBREVIATIONS
Ab, antibody; AHR, airway hyperresponsiveness; BALF, bronchoalveolar lavage fluid; ELISA, enzyme-linked
immunosorbent assay; IFN-γ, interferon gamma; Ig, immunoglobulin; IL, interleukin; OVA, ovalbumin; PAS, pe-
riodic acid-Schiff; PBS, phosphate buffered saline; SEM, standard errors; Th, helper T.
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INTRODUCTION

Asthma is a chronic inflammatory disease in the air-
ways characterized by eosinophilic inflammation,
bronchial hyperresponsiveness, and remodeling such
as goblet cell hyperplasia in the airway epithelium.
Most patients, especially those who developed
asthma during the childhood, exhibit sensitization to
allergens such as house dust mite, animal dander,
and fungi. Importantly, the same allergen(s), espe-
cially house dust mite, plays an important role in the
pathogenesis of other allergic diseases such as aller-
gic rhinitis and eczema, and therefore, it is not sur-
prising that a substantial number of patients suffer
from more than one allergic diseases. In the cases
with so-called ‘atopic march’, eczema often precedes
the development of allergic symptoms in the upper
and lower airways, suggesting the importance of
epicutaneous sensitization in these patients.1-5 This
hypothesis is further supported by the discovery that
loss-of-function mutations in the gene of filaggrin, a
molecule indispensable for normal cutaneous barrier
function, increase the risk of both eczema and
asthma.2,6-9 It is, therefore, important to study the
role of the skin as an interface and initial immune re-
sponse to exogenous allergen in the process of atopic
march.

Recent studies have clarified that IL-23, a cytokine
that promotes differentiation and survival of Th17
cells and production of IL-17A, IL-17F, and IL-22,10,11

enhances Th2-type immune reactions12 and is associ-
ated with pathogenesis and severity of asthma.13-16 In
addition to the evidences obtained from the studies
using intraperitoneally-sensitized models, clinical and
basic research has elucidated that IL-23�Th17 path-
way is more crucial in the immune responses to aller-
gens in the skin. The number of Th17 cells is in-
creased in the skin and in the peripheral blood of pa-
tients with atopic dermatitis, associating with its se-
verity.17 Epicutaneous, but not intraperitoneal immu-
nization of mice to ovalbumin (OVA) expands the
number of IL-17A-producing T cells in draining
lymph nodes and spleen, and increases serum levels
of IL-17A.18

There is, however, some controversy about the
role of IL-23�Th17 axis in the pathophysiology of al-
lergic airway diseases. Exogenous IL-17A, given to
mice during established asthma inflammation, re-
duces eosinophil recruitment into the lungs and air-
way hyperresponsiveness.19 Other researchers also
reported that exogenous IL-23 treatment reduces air-
way hyperresponsiveness and inflammation in asth-
matic Tlr6-�- mice.20 These discrepancies among the
studies may be due to the differences of IL-23 and IL-
17 expression in regard to the timing and�or the loca-
tion. In the present study, we separately blocked IL-
23 activity during the sensitization and the exposure
phase using an IL-23-specific neutralizing antibody, in

order to examine the spatiotemporal differences in
the roles of IL-23 in epicutaneously-sensitized ast-
hma.

METHODS

ANIMALS AND PROTOCOLS FOR EPICUTA-
NEOUSLY-SENSITIZED ASTHMA MODEL
Specific pathogen-free, 6-week-old, male C57BL�6J
mice, weighing between 25 and 30 g, purchased from
Charles River Laboratories, Kanagawa, Japan, were
used in this study. Epicutaneously-sensitized asthma
model was prepared as previously reported.21 Briefly,
40 μl phosphate buffered saline (PBS) containing 160
μg ovalbumin (Sigma, St. Louis, MO, USA) was
placed on the filter paper in a Finn chamber (Smart-
PracticeⓇ, Phoenix, AZ, USA) and applied to the
shaved skin on the back of mice on days 1-3, 8-10,
and 15-17 (Fig. 1). These mice were then exposed to
aerosolized allergen [2% (w�v) OVA diluted in PBS]
for 20 min in a dedicated chamber on days 20-23.
During the sensitization and�or the challenge phase,
anti-IL-23 Ab (CNTO 6163, 0.5 mg�mice, provided by
Johnson & Johnson, New Brunswick, NJ, USA) or
control IgG Ab (CNTO 1322, 0.5 mg�mice, provided
by Johnson & Johnson) was injected intraperitoneally
as shown in the Figure 1.

This study followed the Helsinki Convention stan-
dards for the use and care of animals. All the proto-
cols of the animal experiments used in this study
were approved by the Laboratory Animal Care and
Use Committee of Keio University School of Medi-
cine.

MEASUREMENT OF AIRWAY RESPONSIVE-
NESS
The airway responsiveness to methacholine (Sigma)
was measured by using flexiVent system (SCIREQ,
Montreal, Canada) at 1 and 8 days after the last chal-
lenge of aerosolized OVA. The animals anesthetized
with ketamine and xylazine were quasi-sinusoidally
ventilated at 180 breaths�min, with a computer-
controlled, small animal ventilator, with a tidal vol-
ume of 10 ml�kg, against an artificial positive end-
expiratory pressure of 3 cm H2O. Resistance of respi-
ratory system was measured, using a 3-Hz sinusoidal
piston volume movement of 10 ml�kg. The pressure-
volume and flow data were fit to a single compart-
ment model to derive the measurements of airway re-
sistance. Freshly prepared methacholine in cold PBS
was delivered through an inline nebulizer, in doses of
0, 6.25, 12.5, 25, 50 and 100 mg�ml. The direct deliv-
ery of methacholine to the lung was timed with inspi-
ration. After each methacholine challenge, the airway
resistance was measured every 15 s during tidal
breathing, and the 3rd or 4th measurement whichever
was higher was used as the value of bronchoconstric-
tor response to each individual methacholine concen-
tration.
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Fig.　1　Experimental protocol for epicutaneously-sensitized asthma model. Mice were divided into 4 groups in terms 

of the antibodies (control IgG or anti-IL-23 antibody) and the timing of administration (sensitization or challenge 

phase). On 1 or 8 days after the last ovalbumin challenge, airway hyperresponsiveness was measured and then 

mice were sacrifi ced. OVA, ovalbumin; Ab, antibody.
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ASSAY OF SERUM IMMUNOGLOBULIN LEVELS
Mice were sacrificed using overdose pentobarbital af-
ter the measurement of airway responsiveness, and
whole blood was collected from the inferior vena
cava. Serum samples were tested by sandwich
ELISAs for total IgE and OVA-specific IgG1. Total IgE
levels were measured using plates coated with puri-
fied rat anti-mouse IgE capture Ab (BD Biosciences,
San Jose, CA, USA). OVA-specific IgG1 was measured
by direct ELISA using plates coated with OVA and a
biotin rat anti-mouse IgG1 (BD Biosciences) as detec-
tion Ab. The concentration of each immunoglobulin
was given in absorbance (OD 405 nm) values.

BRONCHOALVEOLAR LAVAGE FLUID
The trachea was intubated and gently flushed with
1.4 ml of cold PBS including 0.6 mM ethylenediamine
tetraacetic acid (EDTA). Total number of cells in
BALF was determined with hemocytometer after
hemolysis, and differential cell counts were deter-
mined in cytospin preparations stained with Diff-
Quick (Symex, Kobe, Japan).

LUNG HISTOLOGY
The chest was opened, and pulmonary circulation
was thoroughly flushed with PBS using a peristaltic

pump (flow rate 5 ml�min) through a catheter in-
serted in the pulmonary artery. The left lung lobes
were removed and fixed in 4% (w�v) neutralized buff-
ered paraformaldehyde (pH 7.4). Lung tissues were
paraffin embedded, and the sliced sections were
stained with hematoxylin & eosin or periodic acid
Schiff (PAS)-alcian blue for histological analyses. A
semi-quantitative scoring system was used to grade
the degree of eosinophil accumulation and mucus
production in the airway epithelium. In the tissues
stained with hematoxylin & eosin, randomly-selected
5 bronchi were graded from 0 (no eosinophils) to 4
(abundant eosinophilic infiltration) in a blinded man-
ner, and scores were summed (0-20). In the tissues
stained with PAS-alcian blue, mucus production in
the airway epithelium was also semi-quantified. We
evaluated the all bronchi in the tissues and graded
from 0-4 (proportion of PAS-alcian blue positive epi-
thelial cells in each bronchus: 0%: 0, 1-25%: 1, 26-50%:
2, 51-75%: 3, 76-100%: 4), and a mean score was used
as mucus score.

ISOLATION OF SPLEEN CELLS FOR in vitro
STIMULATION WITH ALLERGEN
Spleen was minced and cells were isolated using cell
strainers (40 μm). Spleen cells were cultured in vitro
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in RPMI1640 with 10% FBS in the absence or pres-
ence of OVA (100 μg�mL) for 3 days. The culture su-
pernatants were measured for Th1, Th2 and Th17 cy-
tokines with ELISA kits (R&D Systems, Minneapolis,
MN, USA) according to the manufacturer’s protocol.

QUANTITATIVE RT-PCR
Skin tissues were biopsied at 1, 3, and 6 h after OVA
patch application. The tissue samples were homoge-
nized, RNA was extracted using RNeasy mini kit
(QIAGEN, Hilden, Germany), and cDNA was gener-
ated with SuperScript reverse transcriptase (Invitro-
gen, Carlsbad, CA, USA). The expression levels of
Il12a, Il12b, Il23a, Gapdh mRNAs were measured by
real-time quantitative PCR using SYBR Green Master
Mix (Applied Biosystems, Foster City, CA, USA) and
an ABI 7500 real-time PCR system (Applied Biosys-
tems). Data were normalized to the expression levels
of Gapdh gene.

STATISTICAL ANALYSIS
All data are presented as means and standard errors
(SEM). Data were analyzed with GraphPad Prism 6
(GraphPad Software, La Jolla, CA, USA). The Stu-
dent’s t-test was used to determine statistical signifi-
cance between two groups. One-way ANOVA, fol-
lowed by Dunnett’s test as a post hoc test, was used to
compare the three groups treated with anti-IL-23 Ab
and the group treated with control IgG alone. Two-
way ANOVA were used for the analyses of airway re-
sponsiveness and gene expression in the skin. All re-
ported P values were based on two-sided tests.

RESULTS

IL-23 GENE EXPRESSION IN THE SKIN
We hypothesized that the skin was one of the sources
of IL-23 production in response to allergen or me-
chanical stress during epicutaneous sensitization.
PBS or OVA patch was placed on the shaved skin of
mice for up to 6 hours, and then the skin was biop-
sied. There was no change in the levels of Il17a,
Il17f, Il12a (the gene for IL-12p35), or Il12b (the
gene for IL-12p40 which is the common component of
IL-12 and IL-23). In contrast, the mRNA levels of IL-
23p19 (Il23a) were significantly increased than the
levels in the naïve skin at 6 h after the patch applica-
tion (Fig. 2). There was no difference whether the
patch contains OVA or not, suggesting the role of me-
chanical stress on the skin in the induction of IL-23
expression.

ANTI-IL-23 Ab REDUCES THE SERUM LEVELS
OF OVA-SPECIFIC IgG1

The serum levels of total IgE and OVA-specific
IgG1 in OVA-sensitized and challenged mice were sig-
nificantly elevated than those of naïve mice (Fig. 3).
Treatment with anti-IL-23 Ab during both sensitiza-
tion and challenge phase decreased the levels of

OVA-specific IgG1 compared to those treated with
control IgG alone (Fig. 3b, p < 0.01). Treatment with
anti-IL-23 Ab during sensitization phase alone also
showed a trend to decrease the levels of IgG1, but did
not reach the statistical significance (Fig. 3b, P =
0.08). We could not find any significant difference in
the serum levels of total IgE among the 4 groups
treated with anti-IL-23 Ab and�or control IgG, due to
large inter-animal variability (Fig. 3a). OVA-specific
IgE was not detectable in this model as we previously
reported.21

ANTI-IL-23 Ab DURING SENSITIZATION PHASE
REDUCES AIRWAY EOSINOPHILIA
On the next day after the last allergen challenge,
there was no difference in the total and differential
counts of inflammatory cells in BALF among 4
groups treated with anti-IL-23 Ab and�or control IgG
(Fig. 4a). In contrast, the number of eosinophils on
day 8 after allergen challenge was significantly re-
duced in the animals that received anti-IL-23 Ab treat-
ment only in the sensitization phase (Fig. 4b). Anti-IL-
23 Ab treatment during the challenge phase alone did
not show any effects on BALF eosinophillia. There
were few neutrophils in BALF on days 1 and 8 after
allergen challenge, without any difference by the anti-
IL-23 Ab treatment.

Histological examination of the lungs harvested 8
days after OVA exposure also demonstrated that anti-
IL-23 Ab treatment during sensitization phase signifi-
cantly reduced eosinophil accumulation in the peri-
bronchial space (Fig. 5a). As for mucus score, we did
not find any difference among the groups (Fig. 5b).

ANTI-IL-23 Ab DURING CHALLENGE PHASE EX-
ACERBATES AIRWAY HYPERRESPONSIVE-
NESS
Enhanced airway hyperresponsiveness was observed
both on days 1 and 8 in the mice sensitized and chal-
lenged with OVA (Fig. 6). Mice administrated with
anti-IL-23 Ab during the challenge phase alone re-
vealed a significant increase in the airway hyperre-
sponsiveness on day 8 than those treated with control
IgG Ab alone. Treatment with anti-IL-23 Ab during
sensitization phase alone did not affect airway hyper-
responsiveness.

EFFECTS OF ANTI-IL-23 Ab ON THE CYTOKINE
SYNTHESIS IN SPLEOCYTES
Spleen cells, isolated from epicuaneously-sensitized
and challenged mice, showed a significant increase in
the release of IL-13, IL-17A, IL-17F, and interferon
gamma (IFN-γ) in response to the re-stimulation with
OVA in vitro. Splenocytes from the animals treated
with anti-IL-23 Ab during sensitization phase showed
a trend to decrease the production of IL-13 and IL-
17A, but did not reach statistical significance (Fig. 7).
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Fig.　2　Expression of Il12a (a), Il12b (b), Il23a (c), Il17a (d), and Il17f (e) mRNAs in the skin applied with patch contain-

ing phosphate buffered saline (PBS: open columns) or ovalbumin (OVA: closed columns) for 0, 1, 3, and 6 hs. The lev-

els of cytokine mRNAs determined by quantitative RT-PCR were normalized with the expression of Gapdh mRNA. The 

expression levels at 0 h was defi ned as 1.0. Mean + SEM, n = 3-10 for each group. *P < 0.05 compared to the levels at 

0 h (naïve mice).
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Fig.　4　Total and differential cell counts in bronchoalveolar lavage fl uid (BALF) on day 1 (a) or day 8 (b) after the 

last ovalbumin (OVA) exposure. Left panels show the mice which received phosphate buffered saline (PBS) 

patch and then exposed to OVA aerosols (n = 3). Right panels demonstrate the mice treated with OVA patch and 

OVA inhalation (n = 5-17). Mean + SEM. *P < 0.05 compared to the animals treated with control IgG during both 

the sensitization phase and the challenge phase.
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Fig.　5　Histological score of eosinophil accumulation in peribronchial spaces (a) and mucus production in the airway epitheli-

um (b) on day 1 or 8 after the last ovalbumin (OVA) exposure. Bars represent the mean values. *P < 0.05 compared to the ani-

mals treated with control IgG during both the sensitization phase and the challenge phase.
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DISCUSSION

Patch application used in the present study for the
epicutaneous sensitization, as tape stripping protocols
used in the previous reports,18,22 upregulated the ex-
pression of IL-23 in the skin regardless of the pres-

ence of OVA, suggesting the role of mechanical
stress. It has been demonstrated that mechanical
stress on epidermis induces the release of adenosine
5’-triphosphate,23 which can enhance IL-23 expres-
sion in dendritic cells.24 The source of IL-23 in the
skin is still unclear, although IL-23 signaling is
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Fig.　7　Production of IL-5 (a), IL-13 (b), IFN-γ (c), IL-17A (d), and IL-17F (e) in spleen cells from epicuta-

neously-sensitized asthmatic mice treated with or without anti-IL-23 antibody. Splenocytes isolated on the 

next day after the last ovalbumin (OVA) exposure were re-stimulated in vitro with phosphate buffered sa-

line (PBS) or OVA for 3 days. Mean + SEM, n = 3-5 for each groups. **P < 0.01 compared to the spleno-

cytes re-sestimulated with PBS.
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enhanced in keratinocyte25 and antigen presenting
cells including Langerhans cells and dermal dendritic
cells26-28 in the psoriasis skin. The present study dem-
onstrates that the blockade of IL-23 during this sensi-
tization phase with a neutralizing antibody caused im-
portant changes in the immune responses of the host;
1) inhibition of antigen-specific IgG1 synthesis, and 2)
mitigation of the persistent eosinophilic airway in-
flammation. On the other hand, the inhibition of IL-23
during the challenge phase of allergen to the airways
rather exacerbated airway hyperresponsiveness.

There are several possibilities in the mechanism
how the activation of IL-23�Th17 pathway enhances
the allergen sensitization and the following airway in-
flammation. Vaccination against IL-23p40, the com-
mon subunit for IL-12 and IL-23, suppresses neutro-
philic, but not eosinophilic inflammation in the
airways of the epicutaneously-sensitized asthma
model,16 suggesting the role of IL-23-drived produc-
tion of IL-17 that stimulates airway epithelial cells to
release neutrophilic chemokines. In contrast, our
model lacked neutrophilic inflammation even in the
absence of IL-23 blockade, and moreover, the anti-
inflammatory effects of anti-IL-23 antibody were ob-
served only when it was administered during the sen-
sitization, but not in the challenge phase. Therefore,
there should be other mechanisms for IL-23 to en-
hance airway inflammation than the recruitments of

neutrophils. In fact, both IL-23p40 vaccine and anti-IL-
23 Ab suppressed the levels of OVA-specific IgG1,
suggesting that IL-23 blockade exhibits some mecha-
nism(s) to dampen Th2 immune responses.

There are accumulating evidences indicating that
IL-23 and its signaling is important for the induction
of Th2 immune responses. Enforced expression of IL-
23 in the murine airways significantly increases not
only allergen-induced release of IL-17A, but also of IL-
13 in the BALF with enhanced airway inflammation
and hyperresponsiveness to acetylcholine.15 Simi-
larly, overexpression of IL-23 receptor in lympho-
cytes results in enhanced Th2 cytokine production,12

which is further supported by the in vitro experi-
ments showing the role of IL-23 in the differentiation
of Th2 cell.15 These and other reports are consistent
with our observation that the inhibition of IL-23 dur-
ing the sensitization phase was associated with a
trend of decreased production of systemic Th2�Th17
cytokines.12,20

IL-17A can also act as a negative regulator of
eosinophil recruitment and hyperresponsiveness in
the airways, when administrated in the established
asthmatic inflammation.19 These activities of IL-17A
to reduce pulmonary eosinophilia may be associated
with suppressed expression of chemokines such as
CCL-11�eotaxin.19 In the present study, we found that
administration of anti-IL-23 Ab during the antigen
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challenge phase alone enhances airway hyperrespon-
siveness. In addition, the effects of anti-IL-23 Ab on
the reduction of pulmonary eosinophilia were dimin-
ished when the antibody was administered during
both sensitization and challenge phase.

Interestingly, we found some discrepancy between
eosinophilic airway inflammation and bronchial hy-
perresponsiveness after the treatment with anti-IL-23
antibody during either sensitization or challenge
phase. Such dissociation between airway inflamma-
tion and hyperresponsiveness has been reported in
other models of asthma,29-31 however, its exact
mechanisms are yet to be determined.

In conclusion, the blockade of IL-23 is beneficial
when it is applied during the sensitization phase. In
the clinical practice, however, temporal separation of
sensitization and challenge phases is impossible.
Therefore, specific inhibition of IL-23 expression or
signaling in the skin would be an appropriate ap-
proach to modulate epicutaneous sensitization. Be-
cause large molecules such as antibodies cannot be
locally delivered to the skin due to its barrier func-
tion, the development of low molecular weight com-
pounds that block IL-23 signaling is expected to con-
trol epicutaneous sensitization.
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