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Aspirin-Intolerant Asthma (AIA)
Assessment Using the Urinary
Biomarkers, Leukotriene E4 (LTE4)
and Prostaglandin D2 (PGD2)
Metabolites
Noritaka Higashi1, Masami Taniguchi1, Haruhisa Mita1, Hiromichi Yamaguchi1,
Emiko Ono1 and Kazuo Akiyama1

ABSTRACT
The clinical syndrome of aspirin-intolerant asthma (AIA) is characterized by aspirin�nonsteroidal anti-
inflammatory drug intolerance, bronchial asthma, and chronic rhinosinusitis with nasal polyposis. AIA reactions
are evidently triggered by pharmacological effect of cyclooxygenase-1 inhibitors. Urine sampling is a non-
invasive research tool for time-course measurements in clinical investigations. The urinary stable metabolite
concentration of arachidonic acid products provides a time-integrated estimate of the production of the parent
compounds in vivo. AIA patients exhibits significantly higher urinary concentrations of leukotriene E4 (LTE4)
and 1,15-dioxo-9α-hydroxy-2,3,4,5-tetranorprostan-1,20-dioic acid (tetranor-PGDM), a newly identified me-
tabolite of PGD2, at baseline. This finding suggests the possibility that increased mast cell activation is involved
in the pathophysiology of AIA even in a clinically stable condition. In addition, lower urinary concentrations of
primary prostaglandin E2 and 15-epimer of lipoxin A4 at baseline in the AIA patients suggest that the impaired
anti-inflammatory elements may also contribute to the severe clinical outcome of AIA. During the AIA reaction,
the urinary concentrations of LTE4 and PGD2 metabolites, including tetranor-PGDM significantly and correla-
tively increase. It is considered that mast cell activation probably is a pathophysiologic hallmark of AIA. How-
ever, despite the fact that cyclooxygenease-1 is the dominant in vivo PGD2 biosynthetic pathway, the precise
mechanism underlying the PGD2 overproduction resulting from the pharmacological effect of cyclooxygenease-
1 inhibitors in AIA remains unknown. A comprehensive analysis of the urinary concentration of inflammatory
mediators may afford a new research target in elucidating the pathophysiology of AIA.
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Fig.　1　Arachidonic acid cascade (Adapted from Yamaguchi et al.49).
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Table　1　Infl ammatory mediators in biological samples

Invasive Non-invasive

BALF ELF
Induced 
sputum

Plasma EBC Saliva Urine

unmetabolized compounds metabolites
unmetabolized

compounds
urinary metabolites

local production
whole body 
production

Local production whole body production

instantaneous measure of
endogenous production of the compounds

time-integrated measure of endogenous 
production of the compounds

ext. high
levels

ext. Low 
levels

Low
levels

relatively high levels

Abbreviations: BALF, bronchoalveolar lavage fl uid; ELF, epithelial lining fl uid; EBC, exhaled breath condensate; ext., extremely.

GPCR, G-protein coupled receptors; PPAR-γ, Peroxisome proliferator activated receptor γ; BMMC, Bone
marrow-derived mast cell; 15R-PGD2, 15R-methyl-prostaglandin D2; DP2, Prostaglandin D2 receptor 2; GSH,
Glutathione.

INTRODUCTION

The clinical syndrome of aspirin-intolerant athma
(AIA) is characterized by aspirin�nonsteroidal anti-
inflammatory drug (NSAID) intolerance, bronchial
asthma and chronic rhinosinusitis with nasal poly-
posis (CRSwNP).1,2 Aspirin�NSAID-induced asthma
reactions are triggered by pharmacological effect of
cyclooxygenease-1 (COX-1) inhibitors, whereas COX-
2-specific inhibitors (coxibs) are tolerated in the vast
majority of cases.3,4 Several clinicoepidemiologic
studies5-9 have demonstrated that AIA is one of the
common risk factors for the development of refrac-
tory asthma. Previous in vitro studies demonstrated

the release of chemical mediators from leukocytes in
AIA patients and these in vitro tests may be applica-
ble to a diagnosis of aspirin�NSAIDs intolerance.10-13

However, there is no experimental evidence which di-
rectly supports this hypothesis.14,15 That is, there is
neither an appropriate in vitro test to diagnose AIA
nor an animal model to help fully elucidate the patho-
genesis of AIA. Thus, biological fluid samples from
AIA subjects are the only research tools available.
Urine samples constitute a non-invasive research tool
for time-course measurements in the clinical setting,
although such data does not provide any information
on the sites of the production. The urinary concentra-
tion of chemical mediator metabolites is remarkably
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Fig.　2　Changes in the urinary LTE4 concentrations following endoscopic sinus surgery 

(ESS). Horizontal bars indicate medians. Patients with aspirin-intolerant asthma (AIA, n = 

19) and patients with aspirin tolerant asthma (ATA, n = 8) are denoted by circles and 

squares, respectively. Additional urinary data (12 AIA patients, closed circles) were in-

cluded in the original fi gure published previously.26 The asterisks (*, **) indicate p < 0.05 

and p < 0.01, respectively, in comparison with baseline values (pre-ESS).
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higher than the plasma concentration, which allows
us to correlate the mediator metabolite levels with
clinical symptoms. The characteristics of the biologi-
cal fluid samples are shown in Table 1. It is important
to note that because various arachidonic acid metabo-
lites (Fig. 1) are rapidly metabolized in vivo, the uri-
nary concentration of their stable metabolites pro-
vides a time-integrated estimate of the production of
the parent compounds, allowing a detection of their
generation in vivo.16 In this review article, we focus
on the clinical implications of urinary biomarkers
such as cysteinyl-leukotrienes (CysLTs) and prosta-
glandin D2 (PGD2) metabolites in AIA.

URINARY LEUKOTRIENE (LT) E4 IN AIA AT
BASELINE

Since the leukotriene (LT) C4 is easily metabolized in
the lungs and�or the liver, and then disappears into
the body fluid, LTE4 is the predominant metabolite
among the CysLTs of defined structure.17,18 It is re-
ported that 4-13% of the intravenous or inhaled dose
of LTC4 is excreted in the urine.16,19,20 Arachidonic
acid metabolites are present in extremely small quan-
tities in biological fluids (on an order ranging from
pg�ml to ng�ml). When assayed by enzyme immu-
noassay (EIA), biological samples should be purified
in order to eliminate any interfering substances.
Thin-layer chromatography has been commonly em-
ployed to remove such interfering substances. We be-
lieve that purification using high-performance liquid

chromatography (HPLC) is also convenient and pro-
vides a suitable quantification procedure. Recently it
has been emphasized that additional chroma-
tographic steps are required for obtaining reliable
data on the urinary LTE4 concentrations.21,22 There is
increasing evidence that the AIA group exhibits a sig-
nificantly higher urinary LTE4 excretion level at base-
line than the aspirin-tolerant asthma (ATA) group,
even in a clinically stable condition.23-31 Of late it ap-
pears that the baseline urinary LTE4 concentrations
in the AIA group are on a decline compared with
original data by Christie et al.23 and Kumlin et al.,29

perhaps because of a stabilization of asthma symp-
toms by inhaled corticosteroids. Considering the dis-
tinct evidence from several immunohistochemical
studies,32-34 LTC4 producing cells such as eosinophils
and mast cells seem to contribute to increased base-
line concentrations of urinary LTE4 in subjects with
AIA. Interestingly, we have demonstrated that a se-
vere ATA group with chronic rhinosinusitis with na-
sal polyposis (CRSwNP) also exhibited a significantly
higher urinary LTE4 concentration at baseline.26 That
is, CysLT overproduction is associated with the clini-
cal features of severe asthma with CRSwNP, that is,
the so-called “aspirin triad” in AIA. Taken together
with the evidence that there is a close relationship be-
tween CRSwNP and CysLT overproduction in asth-
matic subjects, we have proposed the concept of
“hyper-leukotrienuria”.26,35 The preliminary data indi-
cates that aspirin intolerance seldom develops in pa-
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Fig.　3　Evidence of clinical improvement of asthma symptoms after endoscopic sinus 

surgery (ESS). Horizontal bars indicate means. The asterisk (*) indicates p < 0.05 in com-

parison with baseline values (pre-ESS, n = 9).
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Table　2　Analytical signifi cance of urinary eicosanoid concentrations

Urinary
eicosanoids

Metabolites compounds Unmetabolites compounds

LTE4
D-ring
PGDM

F-ring 
PGDM

PGEM and tetranor- 
PGEM

primary PGE2 ent-PGF2α

Derived from 5-LO
COX

(COX-1 dominant)
COX

(COX-2 dominant)
non-

enzymatic

As an index of
whole body production local kidney 

production
free radical-

mediated productionLTC4 PGD2 PGE2

Abbreviations: LTE4, leukotriene E4; 5-LO, 5-lipoxygenase; PGDM, prostaglandin D2 metabolite; F-ring PGDM, 9α,11β-prostaglandin F2 

and 2,3-Dinor-9α,11β-prostaglandin F2; D-ring PGDM, tetranor-PGDM; PGE2, prostaglandin E2; PGEM, 13,14-dihydro-15keto-prostaglandin 

E2; tetranor-PGEM, 9,15-dioxo-11α-hydroxy-2,3,4,5-tetranor-prostane-1,20-dioic acid; COX, cyclooxygenase; ent-PGF2α, prostaglandin F2α 

enantiomer.

The original table has been published previously with some modifi cation.25

tients with ATA, even with hyper-leukotrienuria,
throughout the course of a 5-year follow-up period
(unpublished data). This clinical finding leads us to
the hypothesis that CysLT overproduction in vivo
does not promote aspirin intolerance by itself. Inter-
estingly, it was demonstrated for the first time that
there is a significant decrease in the urinary LTE4

concentrations after endoscopic sinus surgery in both
the AIA and ATA groups. We carried out further in-
vestigation in 12 additional AIA patients, and found
further evidence which suggests that CRSwNP is in-
volved in CysLT overproduction in asthmatic sub-
jects, as shown in Figure 2. Furthermore, we have
preliminarily determined the clinical improvement in
asthma-related emergency room visits and bronchial
hyperresponsiveness after endoscopic sinus surgery.
Unexpectedly, sinus surgery resulted in significantly
fewer asthma-related emergency room visits. In addi-
tion, there were significant increases in the Ach-PC20

values after endoscopic sinus surgery. (unpublished
data, Fig. 3) These data typically support the concept
of “one airway, one disease”.36 Recent research sug-

gests a close relationship between LT biosynthesis
and vascular events such as arteriosclerosis.37,38 We
have reported significantly increased urinary LTE4

concentrations in patients with acute exacerbated vas-
culitides.39 It is also reported that the urinary LTE4

concentration is slightly increased in current smok-
ers40 and obese subjects,41 suggesting that the uri-
nary LTE4 concentration may be useful as a non-
invasive biomarker of oxidative tissue inflammation
and related pathophysiologic events.42

URINARY PGs CONCENTRATIONS IN AIA
AT BASELINE

Recently we reported that the urinary PGE2 concen-
trations at baseline in the AIA group are significantly
lower than the ATA group.25 Since PGE2 in urine is
an unmetabolized compound, the primary PGE2 con-
centrations in urine have been considered to pre-
dominantly reflect local renal production43 (Table 2).
Interestingly, lower spontaneous production of PGE2

has been reported in epithelial cells from nasal pol-
yps44 and sinonasal tissue45 in subjects with AIA,
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Fig.　4　Urinary PGD2 metabolites following AIA and anaphylaxis reactions. The 

log-transformed urinary concentrations of PGD2 metabolites are expressed as me-

dians and interquartile ranges in the AIA (n = 10 or 8§), ATA (n = 7) and anaphy-

laxis (n = 8) groups, respectively. § In the case of tetranor-PGDM concentrations. 

The urinary tetranor-PGDM, 2,3-dinor-9α,11β-prostaglandin F2 and 9α,11β-prosta-

glandin F2 are denoted by squares, circles and triangles, respectively. The asterisk 

(*) indicates p < 0.05 compared with baseline values. A dagger (†) indicates p < 

0.05 for the comparison between the AIA and anaphylaxis groups. Urine samples 

were collected at baseline and following the reactions.
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which is associated with diminished COX-2 expres-
sion in these tissues.46,47 Inhaled PGE2 protects
against both aspirin-induced bronchoconstriction and
the massive release of urinary LTE4,48 so a critical de-
ficiency in PGE2 “braking” has been postulated as
one possible mechanism for the AIA reaction. Simi-
larly we have demonstrated a decreased urinary con-
centration of 15-epimer of lipoxin A4 (15-epi-LXA4),49

which is also produced by cell-to-cell interaction in-
volving acetylated COX-2 and 5-lipoxygenase.50 In al-
lergic airway inflammation, not only LXA4 but also 15-
epi-LXA4 block both bronchial hyperresponsiveness
and pulmonary inflammation induced by eosinophils
via the LXA4 receptor, leading to decreases in the
numbers of eosinophils and T-lymphocytes and de-
creases in the concentrations of interleukin-5,
interleukin-13, eotaxin, immunoglobulin E (IgE),
PGs, and CysLTs.51 Thus, it is a plausible explanation
that the low COX-2 expression in vivo may result in
the lower urinary concentrations of anti-inflammatory
PGE2 and 15-epi-LXA4 at baseline in the AIA group,
suggesting the deficiency of additional anti-
inflammatory elements in AIA. Since the AIA subjects
excreted significantly higher urinary LTE4 concentra-
tion at baseline even in a clinically stable condi-
tion,23-29 as described above, an imbalance between
the local production of pro-inflammatory CysLTs and
anti-inflammatory 15-epi-LXA4 and PGE2 at baseline,

may play an important role in development of refrac-
tory asthma in AIA. Unexpectedly, urinary lipoxin A4

(LXA4) was significantly lower than 15-epi-LXA4 be-
cause 15-epi-LXA4 shows a two-fold longer half-life in
vivo,52 as calculated by conversion rate of 15-
hydroxyprostaglandin dehydrogenase.

URINARY CONCENTRATIONS OF PG ME-
TABOLITES IN AIA AT BASELINE

The major urinary metabolites of PGE2 and PGD2 are
shown in Table 2. Among LTC4 producing cells such
as eosinophils, basophils and mast cells, it is only the
mast cells that produce significant quantities of PGD2

in human.53 Although there is evidence of some
PGD2 formation by eosinophils, platelets, macro-
phages and certain T lymphocytes, the reported
amounts are 100 to 1000 times lower than those pro-
duced during IgE dependent activation of mast
cells.54-56 So the urinary PGD2 metabolites are useful
biomarkers of mast cell activation.55 Although it is in-
deed also true that tryptase in the biological fluid
samples is a mast cell-specific biomarker, it is impos-
sible to detect tryptase in urine. Furthermore, it was
reported that serum tryptase concentration was in-
creased in only 6% of the patients who developed ana-
phylaxis.57 Similarly, Bochenek et al. demonstrated
that there was no change in serum tryptase despite
the five-fold increase in plasma 9α,11β-PGF2 follow-
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ing the early phase of allergen-induced airway ob-
struction.58 Thus, we concluded that the determina-
tion of the urinary PGD2 metabolites is more sensi-
tive and practical than serum tryptase for monitoring
mast cell activation.59 “F-ring” urinary PGD2

metabolites, 9α,11β-prostaglandin F2 (9α,11β-PGF2)
and 2,3-dinor-9α,11β-prostaglandin F2 (2,3-dinor-9α,
11β-PGF2), has been frequently used in the clinical
studies.25,55,60,61 Recently, Song et al. newly identified
the most abundant “D-ring” PGD2 metabolite in
urine, 11,15-dioxo-9α-hydroxy-2,3,4,5-tetranorprostan-
1,20-dioic acid (tetranor-PGDM).61 We also examined
the urinary tetranor-PGDM concentration with a
newly commercially available enzyme immunoassay
(EIA) kit (Cayman Chemical, Ann Arbor, MI, USA).
Our data demonstrated that the urinary tetranor-
PGDM concentrations were 4.8-fold (median) higher
than 2,3-dinor-9α,11β-PGF2 or 11.7-fold higher than
9α,11β-PGF2 at baseline.62 Interestingly, the urinary
concentrations of tetranor-PGDM and LTE4 at base-
line in the AIA group was significantly higher than
the anaphylaxis group62 (Fig. 4). To our knowledge,
this is the first report of a significantly higher base-
line concentration of PGD2 metabolites in urine in
AIA patients, except for patients with mastocytosis.63

Thus, the quantification of tetranor-PGDM may be an
attractive strategy for further investigation into mast
cell activation. This finding is consistent with the pre-
vious reports of higher baseline concentration of spu-
tum PGD2,27 plasma 9α,11β-PGF2 and serum tryptase
in the AIA patients.64 Furthermore, it is reported that
there was a significant increase in the number of sub-
mucosal mast cell in the bronchial biopsy obtained
from AIA versus ATA patients.65,66 It is important to
note that the purification of urine by HPLC is crucial
for the precise quantification of tetranor-PGDM. One
limitation of this biomarker of tetranor-PGDM is that
it is generally unstable when not stored at -80℃. By
contrast, there is no significant difference in the ma-
jor urinary PGE2 metabolites, 13,14-dihydro-15keto-
PGE2 (PGEM) and 9,15-dioxo-11α-hydroxy-2,3,4,5-
tetranor-prostane-1,20-dioic acid (tetranor-PGEM), at
baseline between AIA and ATA groups,67 in spite of
the fact that COX-2 contributes substantially to the
biosynthesis of PGE268 and that lower COX-2 expres-
sion is one of the unique characteristics of AIA.46,47

Interestingly, aspirin provocation decreases the uri-
nary concentrations of PGE2 metabolites in only the
ATA group, not the AIA group.67

LTE4 AND PG METABOLITES DURING AS-
PIRIN�NSAIDs-INTOLERANT ASTHMA RE-
ACTION

During systemic aspirin provocation, a runny nose
and nasal congestion (>90%) are the first symptoms,
and then acute bronchoconstriction develops more
than 30 min after the administration of threshold
dose of aspirin. This aspirin-induced bronchoconstric-

tion almost never lasts beyond 24 hours. Extrapul-
monary reactions such as skin reactions and gastro-
intestinal symptoms are minor complications.69 The
urinary LTE4 concentrations after the systemic provo-
cation test with aspirin in the AIA group significantly
increased above the basal concentrations (approxi-
mately a 3-30-fold increase).25,28,30,70,71 There is evi-
dence that shows 1) excessive CysLTs overproduc-
tion in vivo during aspirin-induced bronchoconstric-
tion is a pathophysiologic hallmark of AIA without ex-
ception, 2) an increase in urinary LTE4 concentration
after aspirin challenge, the most dramatic event in
AIA, correlates with the severity of the aspirin-
induced reaction and 3) there is no significant in-
crease in the urinary LTE4 concentration in ATA pa-
tients. Although CysLTs play a key role in the patho-
physiology of aspirin�NSAID intolerance, LT recep-
tor antagonists can attenuate but cannot completely
block aspirin-induced asthmatic reactions.72 One
question that needs to be answered is which cells
produce CysLTs during provocation test. Our study
demonstrated the urinary concentrations of LTE4 and
PGD2 metabolites (2,3-dinor-9α,11β-PGF2,25 9α,11β-
PGF225,28 and tetranor-PGDM62) were significantly in-
creased and correlated with each other after the aspi-
rin provocation test in the AIA group. Bochenek et
al.64 have demonstrated an increase in urinary
9α,11β-PGF2 and serum tryptase after aspirin provo-
cation in AIA patients. Increased concentrations of
histamine and Nτ-methyhistamine, a urinary metabo-
lite of histamine, have also observed after aspirin
provocation in AIA patients.28,73 Taken together, it is
clear that mast cell activation is closely associated
with aspirin-induced bronchoconstriction. However,
markedly different patterns of CysLTs and PGD2 re-
lease in the aspirin-intolerant asthma group and the
IgE-mediated anaphylaxis group,25 respectively, leads
us to speculate that there may be other, unknown cel-
lular sources besides mast cells for CysLTs synthesis
during acute AIA reactions. Because eosinophils also
have the capacity to generate both LTC4 in large
quantity and PGD2 in much smaller quantity,74-77

eosinophils may be responsible for the production of
some of these mediators. Concomitantly with LTC4,
the urinary concentration of LTB4 glucuronide, a uri-
nary metabolite of LTB4, increased in the AIA group
after aspirin provocation. Thus, there may be a possi-
bility that these mediators were partly generated
from eosinophils by cell-to-cell interaction.70 How-
ever, considering that there was no significant
change in the serum level of eosinophil cationic pro-
tein,78 urinary eosinophil-derived neurotoxin or 3-
bromotyrosine,71 which are biomarkers of eosinophil
activation, during AIA acute reaction, this hypothesis
of activated eosinophils involvement remains a matter
of speculation. More importantly, basophils also may
be partly responsible for the production of LTC4 and
histamine, but not PGD2.55,79
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Fig.　5　Chemical structures of prostaglandin F2α and ent-
prostaglandin F2α.
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Song et al. demonstrated that the urinary tetranor-
PGDM concentrations were suppressed by inhibition
with aspirin, but not by a selective inhibition of COX-
2.61 Interestingly, Daham et al. recently demonstrated
that the urinary tetranor-PGDM concentration re-
mains unchanged in both the AIA and ATA groups
following the administration of the selective COX-2 in-
hibitor celecoxib.68 Taken together, despite the fact
that COX-1 is the dominant in vivo PGD2 biosynthe-
sis pathway, the precise mechanism underlying the
PGD2 overproduction through the pharmacological
effect of COX-1 inhibitors in the AIA group remains
unknown.

PG PRODUCTION VIA THE FREE RADICAL-
MEDIATED “ISOPROSTANE PATHWAY”

Recently, it was reported that there is another path-
way in which arachidonic acid is metabolized in vivo
by a free radical-mediated mechanism to yield a se-
ries of PG-like compounds termed isoprostanes that
is independent on the catalytic activity of the COX en-
zyme.80 In contrast with COX-derived PGs, which is
an optically pure form, the radical-mediated peroxida-
tion of arachidonic acid generates a racemic mixture
of PGs (Fig. 5). Thus, the presence of the enantiomer
to COX-derived PG indicates that the PG is generated
via a free radical-mediated mechanism.81 The concen-
tration of the PG enantiomer in urine is a reliable in-
dex of systemic isoprostane and lipid oxidation.81,82 In
particular, quantification of the urinary PGF2α enanti-
omer (ent-PGF2α) constitues a valuable tool for as-
sessing oxidant stress in vivo.82 As judged by the uri-
nary ent-PGF2α concentration, free radical-mediated
PG generation is also involved in the pathophysiology
of IgE-mediated anaphylaxis.25 Therefore, we hy-
pothesized that a free radical-mediated mechanism
might be also responsible for the PGD2 production
which occurs during the AIA reaction. However, un-
expectedly, there was no change in the urinary ent-
PGF2α concentrations after aspirin provocation in the
AIA group.25 It seems that PGD2 overproduction in
vivo in the AIA group after the aspirin provocation
test is independent of the isoprostane pathway. More
interestingly, recent studies on PG biosynthesis have
demonstrated that nitric oxide nitrosylates cytosolic
phospholipase A2 (cPLA2)83 and COX-2,84 resulting in
the activation of these two enzymes and an increase
in PG synthesis. These findings suggest that oxida-
tive stress induces the post-translational modification
of enzymes associated with eicosanoid biosynthe-
sis.85

CONCLUSION AND CLINICAL RELEVANCE

This review article focuses on clinical significance of
urinary biomarkers in AIA. We have analyzed a vari-
ety of biological samples, including serum, saliva,24,86

sputum,27 exhaled breath condensate87,88 and bron-
choalveolar lavage fluid87,89 to assess the pathophysi-

ology of allergic diseases such as AIA. To our knowl-
edge, the biomarker of urinary LTE4 is the only ap-
propriately sensitive biomarker for the aspirin-
induced asthma�sinus reaction. Christie et al.90 have
reported that AIA subjects exhibit selective hyperre-
sponsiveness to LTE4, but not to LTC4, relative to that
seen in ATA subjects. Interestingly, P2Y12, the
adenosine diphosphate receptor, is responsible for
the LTE4-mediated activation and proliferation of
mast cells, as well as amplification of allergic pulmo-
nary inflammation.91,92 Taken these findings to-
gether, it is suggested that a mechanism underlying
AIA is that LTE4-mediated signaling pathway may
play an important role for the development of refrac-
tory asthma. In addition, new receptors for LTE4 have
recently been discovered. Their roles in CysLT sig-
naling and related diseases, in particular AIA, need to
be elucidated.93,94 Single measurements of urinary
LTE4 concentrations do not allow a demonstration of
the cellular source and target organ of CysLT produc-
tion. We preliminarily compared the urinary LTE4

concentrations in the same patients (n = 3) exhibiting
the same extent of bronchoconstriction upon sys-
temic challenge and inhalation challenge. The dura-
tion between the two different challenges was more
than 2 weeks to avoid the refractory period in AIA.
The extent of increase in the urinary LTE4 concentra-
tion after systemic aspirin challenge was 3 to 10-fold
higher than aspirin inhalation challenge (data not
shown). This finding suggests that the site of CysLT
production is not only the bronchi and lungs. There-
fore, further quantification of the urinary PGD2 me-
tabolite concentrations are helping to elucidate how
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mast cell activation is involved in the pathophysiology
of AIA.24,25,28,64,95 However, the precise mechanisms
underlying the PGD2 overproduction in the AIA
group, which occurred despite the administration of a
COX inhibitor, remains unknown. Paruchuri et al.
have reported that LTE4 activates human mast cells
by a pathway that involves a cooperation between
MK571-sensitive G protein coupled receptors
(GPCRs) and peroxisome proliferator activated recep-
tor γ (PPARγ), a nuclear receptor for dietary lipids.
LTE4 possesses a capacity for upregulating COX-2 ex-
pression and causing PGD2 generation.96 Further-
more, He et al.85 have demonstrated that treatment of
bone marrow-derived mast cells (BMMC) with PGD2

reduces the ability of BMMC to generate LTC4 upon
calcium ionophore stimulation, but has little effect on
LTB4 generation. This effect can be reproduced by a
selective agonist of the DP2 receptor, 15R-methyl-
PGD2 (15R-PGD2). 15R-PGD2 exerts its suppressive
effect via a reduction in intracellular glutathione
(GSH), a mechanism that involves the conjugation of
its non-enzymatic breakdown product with GSH.
Quantification of the new biomarker PGD2 metabolite
tetranor-PGDM provides a clinically useful tool for as-
sessing mast cell activation in vivo. Urine samples af-
ford a most non-invasive research tool for time-course
measurements in a clinical study, and a lipidmics ap-
proach using biological fluid samples such as urine
will provide further clinical data targeting mast cell
activation, not only in allergic diseases, but also infec-
tious diseases and cancer.
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